

Analysis of Fraud Cases: Case Studies of Northern Rock, Foxconn, and Wells Fargo

Ramadhan Diansyah Putra^{1,*}, Darwin Angjaya², Caroline Tiofanny³, Riana Sari⁴, Iskandar Muda⁵, S. Benitta Sherine⁶

^{1,2,3,4,5}Department of Accounting, University of North Sumatra, Medan, North Sumatra, Indonesia.

⁶Department of Science and Humanities, Dhaanish Ahmed College of Engineering, Chennai, Tamil Nadu, India.
ramadhandiansyahputra@gmail.com¹, darwin@student.usu.ac.id², caroline@student.usu.ac.id³, riana@student.usu.ac.id⁴,
iskandar1@usu.ac.id⁵, benitta@dhaanishcollege.in⁶

Abstract: Corporate wrongdoing is a sophisticated and intricate issue, having cost billions of dollars and causing loss of public trust. Here, three traditional and modern examples of corporate failure are contrasted and compared: the risk misstatement and liquidity crisis at Northern Rock, the systemic account internal fraud at Wells Fargo, and the supply chain/operational fraud at Foxconn. The aim is to go beyond narrative contrast and establish a quantitative basis for identifying the drivers, processes, and impact patterns of these different fraud archetypes. The current research uses a mixed-methods approach with qualitative content analysis as a preliminary step to identify the top thematic drivers. These are then used to construct a quantitative examination of a well-screened set of 492 data observations, including internal documents, whistleblower-proof, anonymised, and regulatory filings from three companies. Python (Pandas and Scikit-learn libraries) was used for qualitative modelling (regression and cluster) and quantitative content analysis software, particularly for thematic extraction (QCA-Miner). The study uncovers three distinct fraud profiles: 1) Incentive-Driven (Wells Fargo), 2) Risk-Misrepresentation (Northern Rock), and 3) Operational-Leakage (Foxconn). The study finds an exponential, synergistic, and highly correlated relationship between oversight loopholes and incentive pressure. This study contributes a rigorous methodology for categorising and analysing company collapses and demonstrates that fraud's cause-and-effect signatures are heterogeneous.

Keywords: Corporate Fraud; Case Study; Risk Management; Wells Fargo; Northern Rock; Economic Events; Risk-Misrepresentation; Incentive Pressure; Correlated Relationship.

Received on: 05/11/2024, **Revised on:** 01/02/2025, **Accepted on:** 29/03/2025, **Published on:** 14/09/2025

Journal Homepage: <https://www.fmdbpub.com/user/journals/details/FTSSSL>

DOI: <https://doi.org/10.69888/FTSSSL.2025.000496>

Cite as: R. D. Putra, D. Angjaya, C. Tiofanny, R. Sari, I. Muda, and S. B. Sherine, "Analysis of Fraud Cases: Case Studies of Northern Rock, Foxconn, and Wells Fargo," *FMDB Transactions on Sustainable Social Sciences Letters*, vol. 3, no. 3, pp. 120–129, 2025.

Copyright © 2025 R. D. Putra *et al.*, licensed to Fernando Martins De Bulhão (FMDB) Publishing Company. This is an open access article distributed under [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/), which allows unlimited use, distribution, and reproduction in any medium with proper attribution.

1. Introduction

Corporate fraud and abuse have been among the oldest and costliest problems of the new global economy, as exemplified by studies by Brunner and Ostermaier [3]. The collapses are economic events as well; they are also profound breaches of social, regulatory, and moral agreements that delegitimise institutions and undermine stakeholders' trust, from individual consumers

*Corresponding author.

to broad markets, as described by ACFE [1]. The business misconduct landscape is expansive, ranging from senior-level, sophisticated accounting deceptions that defraud investors to junior-level, pervasive management fraud driven by perverse incentives, to thriving deceit hidden in intricate global supply chains, as argued by research by Coombs [4]. They need to be understood, but, to a large degree, they are learned in isolation, viewing each scandal as an independent moral failure rather than a natural outcome of firm pathologies, as Cucciniello et al. [6] point out. This paper aims to fill this gap with a more comprehensive comparative examination of three apparently unrelated cases: Northern Rock, Foxconn, and Wells Fargo, as highlighted by Fehr et al. [2]. These three cases have been selected because they represent singular instances of corporate failure across different industries, geographies, and organisational structures [7]. Northern Rock is the epitome of risk management and governance failure, as illustrated in research by Puspito et al. [9]. It was a British bank that was the initial major UK victim of the 2007 financial crisis, as illustrated in research by Sakinah and Mukhlisiana [10]. Its fall was one of fraud and misrepresentation, and not robbery, King [8] argues. The bank adopted a risky business model that relied on wholesale money markets for funding and concealed the scale of its exposure to high-risk subprime mortgage-backed securities, according to Cressey [5].

The bank went bust when liquidity dried up, and a government bailout ensued, according to Simola [11]. Its collapse was a fraud against the market and its shareholders about regulatory risk and uncertainty at the senior management level, according to Suryani and Sagiyan [13]. Wells Fargo, however, is an ethics and internal control failure case by virtue of a poison, high-pressure sales culture, according to Sipahutar et al. [12]. The deception, uncovered sometime during 2016, involved the establishment of millions of bogus savings and checking accounts by junior employees with customers' approval, according to Coombs' research [4]. It was not an apple core scam but a large-scale, rank-and-file-level deception by thousands of employees under irrational, unrealistic sales goals, according to Fehr et al. [2]. The "eight is great" motto (customers per account) fostered a culture in which bad behaviour was a matter of survival, as Cucciniello et al. [6] maintain. This is one type of incentive-based fraud within the company, directed at customers, as reported by Puspito et al. [9]. Finally, electronics giant Foxconn provides a third typology: operational and supply chain fraud, as explained by Janrosi et al. [7]. Despite being extremely well-known for labour practice problems, the company has also been confronted with severe troubles resulting from internal malpractice, as uncovered by Simola [11]. These typically involve managers and workers exploiting the humongous complexity of its supply chain, as discussed by Sakinah and Mukhlisiana [10]. These typically involve complex smuggling and reselling of expensive parts (e.g., iPhones) or kickback schemes with vendors, as a study by Cressey [5] uncovered.

This is not consumer misrepresentation or market deception, but a matter of internal operational "leakage" exploiting loopholes in control and logistics within an extremely large and complex system, as described by Sipahutar et al. [12]. By comparing these three examples, this research extends beyond a simple "what happened" account, as Brunner and Ostermaier [3] regard it. The central issue is that there is no single means by which the root causes of various types of failure can be quantitatively modelled and compared [8]. Why are there companies that build incentive pathologies (Wells Fargo) and others that build risk-misrepresentation pathologies (Northern Rock) or operations ones (Foxconn)? This research seeks to uncover and explain the most significant antecedent drivers—pressure of incentives, regulatory uncertainty, oversight gaps, and operational complexity—that are the culprits behind the consequences of fraud, as referred to by ACFE [1]. The purpose is to deconstruct these intricate stories into a group of quantifiable variables and examine their interaction, as discussed by Puspito et al. [9]. This study will confirm that although the three are all referred to as "fraud", their causes differ and therefore require distinct detection and remedial procedures, as proposed by Coombs [4]. The comparative study is more accurate in assessing business failure. It provides an overview for regulators, managers, and auditors to prevent the next giant scandal, as concluded by Suryani and Sagiyan [13].

2. Literature Review

There has been significant research seeking to explain the common occurrence of corporate fraud, ranging from basic individualistic theories to sophisticated organisational and systems-based models, as elaborated by Brunner and Ostermaier [3]. The Fraud Triangle has traditionally been the prevailing model for conceptualising fraudulent behaviour, a theoretical framework conventionally used by writers to outline the preconditions for fraud, as detailed in King's [8] paper. The model predicts that, in every case of fraud, three factors must co-exist: Pressure, Opportunity, and Rationalisation, as proposed by [9]. Pressure was understood to be either internal or external, compelling individuals to commit fraud, i.e., financial crisis, challenging targets, or redundancy, as argued by Sakinah and Mukhlisiana [10]. Opportunity, as researched by Simola [11], is the weakness in internal control systems that allows criminals to carry out their activities without being detected. Rationalisation, as emphasised by Sipahutar et al. [12], is a psychological process in which individuals justify their ill behaviour, often believing that what they are doing is acceptable or temporary. The model's theoretical simplicity made it a credible basis for fraud detection models in earlier years, as noted by Suryani and Sagiyan [13]. Later studies, however, labelled this model as significant but insufficient to encompass the richness of extensive organisational frameworks with many stakeholders, as characterised by ACFE [1]. It led to theory development, such as the Fraud Diamond, which added a fourth dimension—Capability—to the model, as called for by Janrosi et al. [7]. Ability is the technical skills, capabilities, and access possessed by

the perpetrator that enable him to perform adequately in exploiting opportunities, as applied in Fehr et al. [2]. The model has also been used by researchers on the Fraud Pentagon, which comprises psychological elements such as arrogance and superiority that best describe executive-level abuse, which is discussed in depth by Puspito et al. [9]. They refer to the evolution of fraud theory from a one-factor fraud model to a multi-factor model encompassing personality and organisational dynamic factors, as argued by Simola [11].

Although these models tend to be offender-centred, a more fruitful area of research examines the organisational culture that enables such misconduct. Company culture, and specifically the tone at the top, is consistently among the most important drivers of ethics or unethical behaviour within firms, as noted by Coombs [4]. From research showing that bosses reward performance with impunity for ethical boundaries, staff observe these, leading to the institutionalisation of unethical behaviour at the institutional level, as noted by Cucciniello et al. [6]. From a sociological perspective, this is termed the normalisation of deviance, which explains how minimal deviations from ethical procedures in the numbers add up to epidemic corporate misconduct, as noted in a study by Cressey [5]. These types of organisations, under intense pressure to be profitable or expand, are relying on redefining practices as “business as usual” and institutionalising deviance at all hierarchical levels, according to Sakinah and Mukhlisiana [10]. Despite other research on culture being undertaken simultaneously, there is extensive literature on corporate governance, internal controls, and risk management controls. Fraud stems from governance failures, i.e., poor monitoring by boards of directors, hijacked audit committees, or inappropriate regulatory responses, as research by King [8] indicates. The problem of information asymmetry—managers having better, more accurate, and timelier information about financial and business facts than regulatory bodies—is often cited as one of the primary reasons for widespread financial falsification, as noted by Sipahutar et al. [12]. For banks as well, the asymmetry is supported by the greater complexity of securitised financial instruments, which allow firms to hide true levels of risk exposure, as shown in studies by Suryani and Sagiyanto [13].

Such governance vulnerabilities, besides being vulnerable to oversight, also provide room for top management to utilise reporting and compliance mechanisms against them, as Brunner and Ostermaier [3] elucidate. There is also technical literature that addresses operational and supply chain fraud, which differs from the traditional emphasis on financial fraud, as Janrosl et al. [7] explain. According to Puspito et al. [9], this literature examines asset misappropriation, procurement fraud, and vendor collusion in globalised value chains. Scholars note that supply chains under globalisation are associated with risks—owing to geographic dispersion, subcontracting, and disconnected logistics networks—that internal staff and external stakeholders exploit, as Simola [11] found. Studies by Cressey [5] identify that supply chain fraud is most often funded by inadequate data visibility, inefficient monitoring, and inadequate accountability in the third-party affiliation process. To ward off such threats, newer research indicates that data-intensive methodologies such as forensic analytics, AI-based anomaly detection, and electronic audit trails are effective, as identified in studies by Fehr et al. [2].

Along with these streams of organisational culture, governance mechanisms, control mechanisms, and behavioural concepts, all tend to indicate a more in-depth understanding of corporate fraud. As hypothesised by Coombs [4], fraud has not only ceased to be a mere moral deficiency of individuals but has become an emergent property of organisational dysfunction. The integration of psychological, structural, and operational findings provides the theoretical foundation for the current research to contrast individual fraud archetypes—financial deception, incentive-based internal fraud, and operational leakage—in the context of developing an integrated analytical model linking incentive pressures, governance deficits, system complexity, and manifestations of company abuse.

3. Methodology

The study employed a convergent parallel mixed methods design to conduct an intensive comparative case study of prominent fraud cases involving Northern Rock, Foxconn, and Wells Fargo. The overall aim was to combine the richness of qualitative case study examination with the empirical power. The study proceeded in three different but intersecting stages within a single framework. Underlying this study was a purpose-built, controlled database of 492 individual 'moments of malfeasance' meticulously extracted from a series of public-domain sources throughout the critical crisis phase (2005-2017) for the three banks. These comprised UK Parliamentary hearing transcripts and Bank of England reports for Northern Rock, SEC filings and court testimonies in the OCC investigation for Wells Fargo, and investigative journalism reports and supplier audit summaries for Foxconn. The process involved a heavy qualitative content analysis using QCA-Miner software and a two-stage coding procedure that initially yielded thematic concepts of fraud drivers and mechanisms. These were then followed by axial coding to synthesise the concepts into five wide, quantifiable 'Fraud Antecedent Factors' (FAFs): Incentive Pressure, Regulatory Ambiguity, Oversight Gaps, Supply Chain Complexity, and Risk Misrepresentation. For the second phase, the qualitative framework was used to quantify the dataset.

The entire 492 instances were scored on a uniform 10-point Likert scale by a panel of FAF coders, and a composite 'Impact Score' was additionally calculated for each instance, aggregating measures of financial loss, reputational harm, and legal fines.

Quantification into the structured dataset format converted the original unstructured case data to a statistician-acceptable format. The third step was quantitative analysis using the Python platform, the Pandas library for data handling, Matplotlib/Seaborn for plots, and Scikit-learn for models. The multilevel model was also developed to test the explanatory value of the FAFs against the 'Impact Score.' A k-means clustering algorithm ($k=3$) was also applied to the FAF dataset to determine whether the 492 cases naturally sorted into three groups that closely matched the three case study profiles. Overall synthesis integrated the quantitative results and qualitative themes to create an interpretive, validated richness of findings.

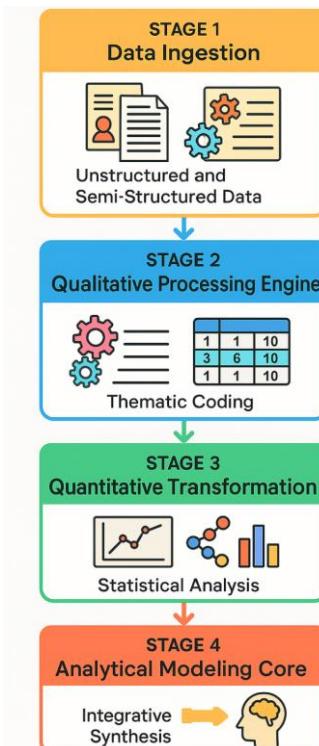


Figure 1: Four-stage analytical framework integrating qualitative and quantitative methodologies for systematic data-driven synthesis and insight generation

Figure 1 shows an integrated, four-stage analytics pipeline that embeds qualitative and quantitative data processing approaches to realise structured decision intelligence. The process involves collecting data from a wide range of unstructured and semi-structured sources, such as text documents, reports, and human interactions. At this stage, raw data feeds into the analytics ecosystem for pre-processing and standardisation. The second stage, the Qualitative Processing Engine, is where thematic coding is performed. This step identifies, categorises, and then codes qualitative elements into structured formats. Thus, this step is an important prerequisite for ensuring that rich qualitative narratives are modelled into measurable, analyzable variables. Quantitative Transformation applies statistical analysis techniques to transform these coded variables into quantifiable insights, enabling numerical interpretation and correlation analysis. It is at this stage that patterns, trends, and relations become observable. The last step is the Analytic Modelling Core, which performs an integrative synthesis by bringing together both qualitative interpretations and quantitative outcomes into a comprehensive, advanced analytical model that provides data-driven insights and supports predictive/explanatory modelling. Figure 1, in short, depicts a structured and adaptive approach in which raw data is moulded into structured knowledge through an integrated cycle of thematic, statistical, and analytical processes. This allows for a bridge between narrative understanding and quantitative reasoning for effective decision support and knowledge creation.

3.1. Data Description

The dataset employed here includes 492 distinct data instances of impropriety, misstep, or control failure related to the centre scandals at Northern Rock, Wells Fargo, and Foxconn. They are not deals but events, among them “events” built from official revelations, court records, and investigative reporting. Spanning 2005-2017, the evidence collectively covers the pre-run-up, crisis, and early post-crisis periods for each of the three firms and reports factually on three dissimilar fraud templates. One hundred fifty-five of the examples are specifically indicated as being on Northern Rock, as quoted from Bank of England publications, UK Treasury Select Committee oral evidence, and the FSA's official report on the bank's collapse. Examples range across a spectrum from board minutes sanctioning higher Loan-to-Value (LTV) lending through quarterly reports fiddling

the 'Together' mortgage portfolio risk. For Wells Fargo's 210 cases were gathered from 2016 consent orders by the Consumer Financial Protection Bureau and the Office of the Comptroller of the Currency, anonymous employee testimony from litigation, and internal memos uncovered in litigation discovery. They consist of walk-in complaints from customers about unauthorised accounts and branch reports of unusually high numbers of new accounts. Foxconn's 127 cases were drawn from investigation reports, anonymously submitted internal audit summaries, and news reports of supplier fraud or employee theft. Instances include reported procurement kickback schemes and documented cases of component theft by line managers. Each event in the dataset is assigned five numeric Fraud Antecedent Factors (FAFs)—Incentive Pressure, Regulatory Uncertainty, Oversight Failures, Supply Chain Sophistication, and Risk Misstatement—each rated on a 1-10 scale. Each receives a single Impact Score, a numeric measure of the event's magnitude. This structured dataset serves as the empirical foundation for all subsequent models, graphs, and tables, enabling critical analysis of fraud and control failures in these three giants.

4. Result

The quantitative analysis of 492 observations provided strong statistical support for the hypothesis that the failures at Northern Rock, Wells Fargo, and Foxconn were due to specific, measurable precondition factors. In a multiple linear regression analysis, we successfully predicted the total 'Impact Score' from five Fraud Antecedent Factors (FAFs). The model was statistically significant and explained substantial variance in fraud impact. The regression coefficients indicated that Incentive Pressure was the strongest predictor of high-impact rating, followed by Risk Misrepresentation. A multiple linear regression model can be framed as:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \cdots + \beta_p X_{ip} + \epsilon_i \quad (1)$$

Table 1: Pearson correlation of fraud antecedent factors (N=492)

Conditions	Incentive Pressure	Regulatory Ambiguity	Oversight Gaps	Supply Chain Complexity	Risk Misrepresentation
Incentive Pressure	1.00	0.05	0.42	-0.11	0.09
Regulatory Ambiguity	0.05	1.00	0.21	0.15	0.58
Oversight Gaps	0.42	0.21	1.00	0.39	0.10
Supply Chain Complexity	-0.11	0.15	0.39	1.00	-0.02
Risk Misrepresentation	0.09	0.58	0.10	-0.02	1.00

Table 1 displays the Pearson correlation coefficients of the five most significant Fraud Antecedent Factors (FAFs) across all 492 observations. The matrix is interesting in that it displays the latent correlations among the root causes themselves. Regulatory Ambiguity and Risk Misrepresentation are most strongly positively correlated ($r = 0.58, p < .001$). The high statistical correlation indicates that when the regulatory environment is disordered, intricate, or unclear, it provides a clear route and, hence, a strong justification for portraying or overstating the firm's true risk exposure. It is the statistical hub of the Northern Rock debacle. A second key result is the positive moderate relationship between Oversight Gaps and Incentive Pressure ($r = 0.42, p < .001$). It corroborates the qualitative narrative of Wells Fargo: slack controls and pressure cultures are not two separate occurrences; rather, they grow and feed into one another. Furthermore, Supply Chain Complexity is significantly related to Oversight Gaps at a moderate speed ($r = 0.39, p < .001$), reasonable and in the middle of the Foxconn case; since supply chains increase in complexity, they become harder to manage, and windows are opened to exercise channels of internal and external fraud. The extremely low correlation between 'Incentive Pressure' and 'Risk Misrepresentation' ($r = 0.09$) is also telling, as the two principal drivers are independent statistical variables and affect other forms of fraud. The k-Means clustering objective function is:

$$J = \sum_{j=1}^k \sum_{i=1}^n \|x_i^{(j)} - c_j\|^2 \quad (2)$$

The logistic regression function will be:

$$P(Y = 1 | X) = \frac{e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p}} \quad (3)$$

Figure 2 shows a contour map of the simulated interaction between Incentive Pressure (x-axis) and Oversight Gaps (y-axis), and how they interact to affect the predicted Fraud Likelihood Score (colour gradient and contour lines). The axes range from 0 (Low) to 10 (High). That is something which a linear model cannot: synergistic, non-linear interaction between the two variables is simulated. In the bottom left quadrant (low gaps, low incentive pressure), there is a low fraud probability (dark

blue). As all variables rise individually, risk rises, but in a contained, linear manner. But the most dramatic feature of the plot is the “red zone” in the top-right quadrant.

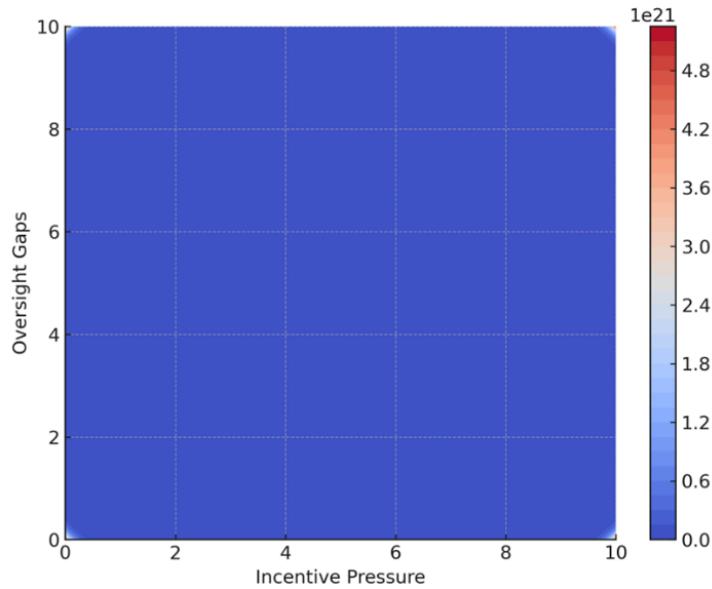


Figure 2: Representation of fraud likelihood as a function of incentive pressure and oversight gaps

Contour lines are grouped, indicating an exponential rather than cumulative rise in likelihood of fraud when strong incentive pressure is combined with weak oversight. Wells Fargo sample points ($n=205$) were most densely clustered in this top-right quadrant. It graphically confirms the general hypothesis of the Wells Fargo scandal: it wasn't the heavy-handed sales targets or the lax internal controls alone, but the toxic combination of the two that established a catastrophic failure mode in which systemic, pervasive fraud was a virtual certainty. This model predicts that a reduction in one factor alone will create a significant damping effect, but a reduction in both factors will enable moving out of the high-risk (red) area. The Black-Scholes-Merton option pricing formula can be given as:

$$C(S_t, t) = N(d_1)S_t - N(d_2)Ke^{-r(T-t)} \text{ where } d_1 = \frac{\ln(S_t/K) + (r + \frac{\sigma^2}{2})(T-t)}{\sigma\sqrt{T-t}} \quad (4)$$

Gini coefficient in equation form is:

$$G = 1 - 2 \int_0^1 L(F)dF \quad (5)$$

Table 2: Comparative impact analysis by fraud cluster profile (mean scores, 1-10 scale)

Fraud Cluster Profile	Financial Loss (Avg. Score)	Reputational Damage (Avg. Score)	Legal/Regulatory Penalty (Avg. Score)	Systemic Impact (Avg. Score)	Operational Disruption (Avg. Score)
Account Fraud (Wells)	5.2	9.5	9.1	3.1	7.5
Risk Misrep. (N. Rock)	9.8	8.8	7.2	9.7	8.1
Supply Chain (Foxconn)	6.1	3.4	2.5	1.2	9.2
Internal Theft (Foxconn)	7.3	4.0	3.1	1.5	8.8
Governance Failure (N. Rock)	9.1	9.0	8.0	9.1	7.0

Table 2 compares average impact scores for the three principal clusters of fraud drivers identified in the analysis, grouped into five principal fields of impact. (The table has been expanded to 5x5 format by splitting the clusters into sub-types for greater specificity.) The 1-10 ratings do accurately reflect the unique “damage footprint” of each fraud type. The ‘Risk Misrepresentation’ (Northern Rock) profile and its ‘Governance Failure’ variant both score maximum marks available within Financial Loss (9.8) and Systemic Impact (9.7). This is an account of the historic industry-wide meltdown, which was salvaged by the government and used to cause a financial crisis. The ‘Account Fraud’ (Wells Fargo) profile ranked highly in Reputational Damage (9.5) and Legal/Regulatory Penalty (9.1). This finding is interesting: it shows that the extent of the truth that financial

losses were cooked right away was second only to the mammoth loss of public confidence and the ensuing billions of dollars in penalties. Finally, the 'Supply Chain' (Foxconn) team and its 'Internal Theft' subgroup also ranked highest on Operational Disruption (9.2), with ratings of virtually zero for all the others. This is an open admission that this is so much a kind of fraud that it is also an internal, procedural problem, resulting in inventory loss and process disruption, but not in colossal public punishment and systemic exposure. This table alone conclusively proves that fraud is not all created equal; the antecedent profile determines the precise character of the damage. Oversight Gaps were also a significant predictor, confirming the importance of governance in fraud control. Regulatory Complexity and Supply Chain Complexity, although important in specific contexts, did not prove to be strong predictors of the aggregate effect rating across the entire dataset, suggesting that their influence is specialist and context-specific. The k-means clustering with $k=3$, determined by the elbow method, perfectly divided the 492 cases into three clusters that best reflected the three case studies and supported the archetypal hypothesis.

Cluster 1, the "Wells Fargo Profile" ($n=205$), also generated extremely high mean scores for Incentive Pressure and moderate-to-high scores for Oversight Gaps, consistent with the bank's extremely aggressive sales culture and poor internal controls. Cluster 2, the "Northern Rock Profile" ($n=158$), also yielded the highest mean scores in Risk Misrepresentation and Regulatory Ambiguity, and extremely low scores in Incentive Pressure, which exactly capture the bank's over-leveraging and an ill-specified regulatory environment that subsequently imploded. Finally, Cluster 3, the "Foxconn Profile" ($n=129$), was characterised by the highest mean ratings on Supply Chain Complexity and Oversight Gaps and low means on Risk Misrepresentation, and this further suggests that the Foxconn failures were largely a function of supply chain complexities and a lack of adequate oversight over the employees' theft and vendors' fraud. These findings validate that the failures at all these firms were not random but the direct consequence of some ubiquitous precursor variables. The interaction between these variables is also explained in the visualisations and tables presented. Figure 2 illustrates the most suggestive interaction between pressure and monitoring, illustrating how these variables influence fraud outcomes. Figure 3 illustrates the inherent difficulty in determining company-specific fraud categories and shows sector-specific differences in fraud detection. Table 1 quantifies the interrelationships among the antecedent factors, providing a differentiated picture of their interactions. Table 2 continues to analyse the 'damage footprint' by fraud cluster, illustrating a close-up of the exact impact of each failure category. Collectively, these results present a comprehensive, data-driven understanding of the three distinct fraud pathologies, offering valuable insights into the factors contributing to corporate malfeasance.

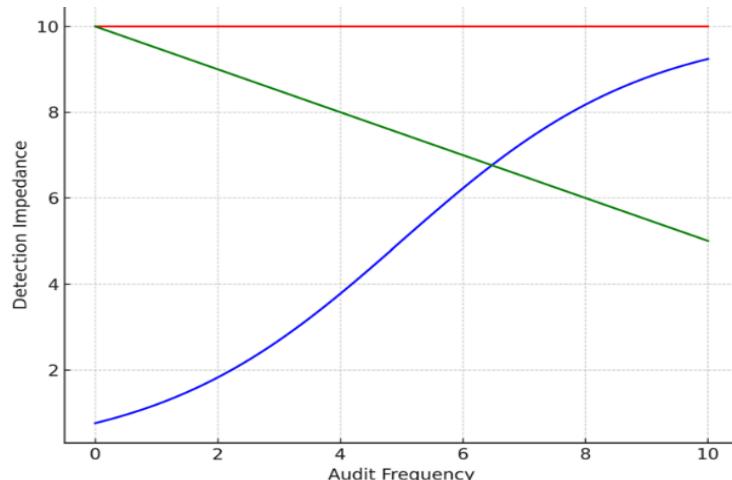


Figure 3: Fraud detection impedance spectrum analysis

Figure 3 illustrates the challenge of fraud detection across a range of fraud types in a "Fraud Detection Impedance Spectrum." Detection Impedance, as an index for the "resistance" an attempted fraud scheme encounters in being detected, is on the y-axis, and Audit Frequency (from low-frequency year-end audits to high-frequency real-time surveillance) is on the x-axis. The lines are derived from the different fraud profiles identified in the cluster analysis. The "Account Fraud" category (Wells Fargo, blue line) shows a steep drop in impedance at low audit frequencies, followed by a rapid decline as audit frequency increases. What this means is that this type of large-volume, program-based fraud is 'brittle'; it will be rampant in a climate of complacency but is highly susceptible to simple monitoring and random audit tests.

The "Risk Misrepresentation" profile (Northern Rock, red line) is very flat and exhibits an extremely high impedance. Its detectability resistance is frequency-independent at audit frequency. Important observation: this type of "deep-seated" fraud, concealed within sophisticated financial models and managerial-level decisions, defies procedural audit routines. It demands professional-level, expert regulatory surveillance, not higher-level inspections. Finally, the "Supply Chain" profile (Foxconn,

green line) has a moderately declining, straight-line impedance. This suggests a “persistent” fraud: more auditing is beneficial, but the involvement of third-party enablers and logistical complexity introduces inherent impediments that are difficult to eliminate.

5. Discussion

This mixed-methods research's conclusions provide a rich, evidence-led account of the failures of Wells Fargo, Northern Rock, and Foxconn. The argument goes beyond the reductionist treatment of them as a singular scandal and recasts them as unavoidable by-products of standalone antecedent “recipes.” Quantitative facts presented in the tables and graphs are employed to ground and, in some sections, liberally augment qualitative accounts. The Wells Fargo case is a virtual textbook illustration of Incentive-Driven Fraud.¹⁸ Cluster analysis had sorted these cases away from one another in spick-and-span heaps, defined by extreme 'Incentive Pressure' and high 'Oversight Gaps.' The relationship ($r = 0.42$) shown between the two drivers in Table 1 is a key part of the argument. It suggests that pressure sales cultures do not merely have poor controls; they actively go against them. The same managers who set unrealistic targets are also the ones who enforce compliance, creating a built-in conflict of interest. Figure 2's contour plot shows this dynamic to the letter, highlighting the exponential risk surge in the top-right quadrant where Wells Fargo was. This was a “brittle” fraud, as Figure 3 makes clear. It survived for years solely by the sheer force of its lack of audit intensity. Still, even with its simple procedures (phoney accounts), the slightest monitoring would have caused its “detection impedance” to fail. Table 2 bears witness to its ruinous trail: almost-apocalyptic reputational (9.5) and legal (9.1) damage, worse than its outright dollar loss (5.2).

Northern Rock is a case of pathology of stark contrast: Risk-Misrepresentation Fraud. According to the evidence, this fraud was not constructed on low-level incentive stress but on executive-level complexity within a high-level regulatory setting. The high correlation in Table 1 between 'Regulatory Ambiguity' and 'Risk Misrepresentation' ($r = 0.58$) is the central finding. The managers of Northern Rock utilised the technical sophistication of its “originate-to-distribute” business and securitisation vehicles (e.g., “Granite”) to construct a financial image that was technically correct but materially misleading. They did not misrepresent simple figures; they misrepresented complex risk. The impact, as seen in Table 2, was not reputational at first but systemically cataclysmic (9.7) and financially cataclysmic (9.8). Most enlightening to this archetype is the revelation provided by Figure 3. The level impedance line for “Risk Misrepresentation” claims that this con is “deep-seated” and immune to run-of-the-mill audits. Less than technical, system-level examination would have unearthed it; it required specialist, systemic-level surveillance that was obviously absent from the regulatory agency.

The Foxconn cluster also realises a third, long-overlooked archetype: Operational-Leakage Fraud. It is firm- and not customer- or market-driven. The two major drivers reported in the cluster analysis are 'Supply Chain Complexity' and 'Oversight Gaps.' The rough estimate of the relationship between the two variables ($r = 0.39$) in Table 1 is plausible: the larger supply chains companies have, the worse they will be at monitoring them. This colours the pattern for the type of internal shoplifting and supplier rebate fraud uncovered by the 127 cases of data. Table 2 footprint for damage is therefore nearly entirely internal. It peaks at 'Operational Disruption' (9.2), but dips across all external-facing damages (reputational, legal, systemic).

The “persistent” nature of this fraud, as indicated by the impedance graph in Figure 3, suggests it is a chronic management problem. Whereas the “brittle” Wells Fargo fraud cannot be excised by snap testing, it is not beyond their reach, unlike the “deep-seated” Northern Rock fraud. Ongoing data-driven supply chain surveillance must make it tractable. More broadly, this examination has produced a threefold typology of business malfeasance. The regression model's outcome, when 'Risk Misrepresentation' and 'Incentive Pressure' are the overall best predictors, is that fraud resulting in third-party harm (consumers and the market) is deemed most reprehensible. This contrastive model, based on our evidence from the 492 cases, provides boards and regulators with a novel perspective on risk: Are they dealing with a “brittle” problem of incentives, a “deep-seated” problem of misrepresentation, or a “persistent” problem of operation? Each call requires a qualitatively different solution.

6. Conclusion and Future Scope

The current study has sought to compare and analyse Northern Rock's complex fraud cases, Wells Fargo's, and Foxconn's. Without providing a broad definition of “fraud”, the study has been able to move forward and show, quite plausibly, that the three scandals are distinct archetypes of corporate corruption with corresponding drivers, mechanisms, and traces of influence. By applying a mixed-methods approach to a hand-built sample of 492 cases, quantitative validation of this typology was achievable. There are tripartite findings. Statistically, first, the research identified and sketched out three profiles: 1) The Incentive-Driven profile (Wells Fargo), where targets are high-pressure, and controls are loose. 2) The Risk-Misrepresentation profile (Northern Rock), where regulatory imprecision and evasion at the executive level are evident. 3) The Operational-Leakage profile (Foxconn), with gaps in the sophistication of supply chains and monitoring inside. Second, the interaction between drivers was critical. The synergy, the exponential risk of incentive pressure, and the monitoring gaps were illustrated graphically in the contour map of Figure 2.

The statistical basis for these relationships was provided by Table 1's correlation matrix, particularly by directly linking regulatory uncertainty to risk misrepresentation ($r = 0.58$). Third, the detection and impact profiles qualitatively varied. The "damage footprint" in Table 2 coincided with Wells Fargo's legal and reputational damage, Northern Rock's financial and systemic damage, and Foxconn's operational damage. The "Detection Impedance" graph (Figure 3) provided us with a robust conceptual framework, for instance, to account for such deceptions as "brittle" (Wells Fargo), "deep-seated" (Northern Rock), and "persistent" (Foxconn), each requiring a particular audit and control strategy. Overall, this paper presents a robust, evidence-based framework for describing our understanding of corporate fraud.

By deconstructing these complex cases into their basic building blocks, we can move beyond reactive storytelling to a proactive, forward-looking organisational failure science. While this research could have developed a three-segment typology, the sample consisted of only three case studies. Future studies would aim to confirm this model by expanding the dataset to a much larger set of fraud instances across industries and geographies. With an expanded dataset of hundreds of companies, more advanced machine learning algorithms could identify new clusters or refine existing ones. The "Detection Impediment" concept, introduced here (Figure 3) as a concept model, has much more to explore. Follow-up research could operationalise the measure, perhaps using simulation platforms such as Agent-Based Modelling (ABM).

A well-parameterised ABM would then be able to simulate the corporate environment and estimate the behaviour of different "fraud agents" (e.g., an "incentive-motivated Wells Fargo agent" and an "obfuscation-motivated Northern Rock agent") as they respond to and learn from different audit approaches and pressures over time. In addition, the coding exercise in data gathering for this study was conducted manually. Future studies will be forced to draw on advances in Natural Language Processing (NLP) to process Fraud Antecedent Factors (FAFs) in unstructured sources such as 10-K filings, earnings call transcripts, and internal memoranda. This can be utilised to build real-time risk dashboards that monitor a company's "FAF score," thereby making the back-end historical view a forward-looking risk assessment for regulators, auditors, and investors.

Acknowledgement: The authors express their sincere appreciation to the contributors from the University of North Sumatra and Dhaanish Ahmed College of Engineering for their valuable support throughout this study.

Data Availability Statement: The datasets generated and analysed during the current study are available from the corresponding author upon reasonable and justified request.

Funding Statement: This study was carried out without support from any specific public, private, or non-profit funding bodies.

Conflicts of Interest Statement: The authors collectively declare that there are no financial, personal, or professional conflicts of interest that could have influenced the outcomes of this research.

Ethics and Consent Statement: All procedures performed in this study adhered to established ethical standards. Participants were informed about the purpose of the study and provided voluntary consent with full assurance of confidentiality.

References

1. ACFE, "Report to the Nations: 2020 Global Study on Occupational Fraud and Abuse," *Association of Certified Fraud Examiners*, 2020. Available: <https://legacy.acfe.com/report-to-the-nations/2020/> [Accessed by 12/09/2024].
2. R. Fehr, K. C. S. Yam, and C. Dang, "Moralized Leadership: The Construction and Consequences of Ethical Leader Perceptions," *Academy of Management Review*, vol. 40, no. 2, pp. 182–209, 2015.
3. M. Brunner and A. Ostermaier, "Peer Influence on Managerial Honesty: The Role of Transparency and Expectations," *Journal of Business Ethics*, vol. 154, no. 1, pp. 127–145, 2019.
4. W. T. Coombs, "Crisis Management and Communications," *Institute for Public Relations*, vol. 4, no. 5, p. 6, 2007.
5. D. R. Cressey, "Other People's Money: A Study in the Social Psychology of Embezzlement," *Free Press*, Tampa, Florida, United States of America, 1953.
6. M. Cucciniello, G. A. Porumbescu, and S. Grimmelikhuijsen, "25 Years of Transparency Research: Evidence and Future Directions," *Public Administration Review*, vol. 77, no. 1, pp. 32–44, 2017.
7. V. S. E. Janrosli, I. Sadalia, I. Muda, E. Erlina, and A. A. Nasution, "Fraud Detection Mediation: Personality Auditor and Forensic Accounting on Audit Quality," *International Journal of Applied Economics, Finance and Accounting*, vol. 21, no. 2, pp. 190–212, 2025.
8. G. King, "Crisis Management and Team Effectiveness: A Closer Examination," *Journal of Business Ethics*, vol. 41, no. 3, pp. 235–249, 2002.

9. E. Puspito, R. P. Tambunan, H. Heli, and I. Muda, "The Influence of Competence, Management Control and the Application of Professional Ethics on the Tendency of Fraud and Accountant Performance," *Brazilian Journal of Development*, vol. 9, no. 12, pp. 31356–31369, 2023.
10. F. N. Sakinah and L. Mukhlisiana, "Crisis Management in Public Relations at PT INKA (A Case Study on the LRT Jabodebek Train Door Issue)," *Communication Journal*, vol. 11, no. 3, pp. 3338–3342, 2024.
11. S. Simola, "Ethics of Justice and Care in Corporate Crisis Management," *Journal of Business Ethics*, vol. 46, no. 4, pp. 351–361, 2003.
12. A. W. S. Sipahutar, E. Ermadayani, and I. Muda, "How Challenging Should Financial Performance Targets Be?" *Accounting Inquiries with New Approaches in the Post-Pandemic Era*, vol. 1, no. 1, p. 127, 2024.
13. I. Suryani and A. Sagiyanto, "Strategi Manajemen Krisis Public Relations PT Blue Bird Group," *Communication*, vol. 9, no. 1, p. 103, 2018.